Volume 8, Number 3, 2009

Information Quarterly

1Q

Going Green with a Combination of

Low-power Processors, Silicon on Insulator

(SOI) Libraries, and Power Management IP

1 L
[technology |

You are debugging an application in o
flash memory, when the reaction Breaklng
time of the system becomes so slow
that debugging becomes impossible.

The system has used all the hardware FlaSh Barrier S:

breakpoints and the debugger

has switched to low-level stepping. Debugging Embedded
Dirk Akemann looks at how to overcome

this and other barriers to
debugging flash microcontrollers. By Dirk Akemann, SEGGER Microcontroller

Microcontroller Applications

AN
We

Today the number of programmers in the world is measured in
the millions and yet they are still spending a good part of their life
finding errors in their programs.

Within the embedded environment, while good programming
practices and the use of appropriate tools can reduce dramatically
the number of bugs that appear in compiled code, there will
inevitably be issues that appear only when the code is executed
in the target system. To track these down it is common to use a
debugger, a software tool that provides insight into the code exe-
cution and the state of the software environment.

One of the most valuable tools within the debug environment is
the use of breakpoints. The idea is both simple and powerful:
when a program encounters a breakpoint it stops execution and
hands control to the debugging software. The debugger can then
display the status of the application environment (variables,
memory, stacks, registers, etc) to help the developer discover
how the application has reached this state.

Once the cause of the bug is identified, changes can be made to
the code and the debug process restarted.

The host processor communicates with the target microcontroller,

and the standard method is through the JTAG interface,

originally created for hardware checking (boundary scan) and
now used also for software debugging and for loading software
into the target microcontroller. With ARM hased architectures,

the device implementer may also offer SWD (Serial Wire Debug)
which uses only two pins compared to JTAG's five and Freescale
products usually offer BDM (Background Debug Mode.) Between
the host PC and the JTAG, or other, interface the physical connec-
tion is usually an emulator.

This typically has a USB connection with the PC and a ribbon
cable to the target board, and translates from one environment to

the other. (Emulator is a name inherited from a previous technolo-

gy - no emulation takes place.)

] cmoiony]
1 Technology b

LI E O ELTTU TG - Different memory architectures

present different debugging challenges, particularly when writing
to memory requires extra effort or is even impossible.

Debugging in RAM is fairly easy, since the debugger uses a simple
breakpoint instruction, which is as short as the shortest
instruction of the CPU. RAM allows for multiple reads and writes
without any noticeable effect.

However, since RAM is normally Iimlted in mlcrocontroller
systems, debugging in RAM o
is not always possible.

For ROM the microcontroller
designers provided the
hardware breakpoints now
commonly used for debug-
ging in flash. Hardware
breakpoints simply compare
the instruction pointer with
the breakpoint position and
check whether the instruction
is actually called. If this is the
case, the program is halted
and the debugger is started.

The hardware breakpoints
are normally limited in
number and in capability.

The debugger hands over the
management of breakpoints to the

In ARM7 or ARM9 J-Link debug probe.

Itwplegzn{t;;tllogs —— For a high-level step the debugger
ere are only 2 watchpoints : .

(ARM terminology for a only needs to issue aSetBP()-Go()

ClearBP()-sequence to the J-Link

hardware breakpoint.) The
new ARM Cortex-M3 has 6
hardware breakpoints available.

How many Breakpoints do | need? [e

debugging many more breakpoints are needed. Even just stepping
over an instruction without single stepping requires at least

two breakpoints. This is because, as the system hits a breakpoint
and stops, the breakpoint is removed and a new breakpoint is set
at the next step in the program. The application is restarted and
runs until it hits the next breakpoint, when it halts again. If the
next step in the program is a branch, then each possible branch
requires a breakpoint. So a simple if() needs two breakpoints
while a typical switch() needs at least three; one at each case
with another at the default: instruction. Yet another breakpoint is
needed if the debugger needs to display the terminal output. If a
debugger tries to set more breakpoints than the microcontroller
can provide, the debugger will normally default to low-level-single
step execution, with a dramatic reduction in performance.

“(M. V. Wilkes, Memoirs of a Computer Pioneer, The MIT Press, 1965.)

— _ohad

i G s

Adding breakpoints in the flash memory would seem a logical
move to overcome these problems, but flash presents its own
challenges.

Writing to flash needs code in RAM, and writing to flash when
the application is running can be difficult, particularly when the
application uses techniques to improve speed of code execution
or power consumption, like changing the CPU speed at run time.
Writing a breakpoint to flash, as with any flash write, may change
the contents of registers and RAM, destroying the evidence
needed for debugging. There are also problems of flash memory
speed and endurance (the physical life) when compared with
RAM. Unlike writing to RAM, where a write operation can
address a single memory location, when a flash write takes place
a huge block of memory (which may be up to 64k) has first to be
cleared and then written to.

Normally setting even a single breakpoint would require this
write cycle. And flash has a finite life: typically after 100,000
writes to a flash memory cell the time it will retain data begins to
fall. For a microcontroller memory it is possible that specific cells
could reach this number of write cycles unless appropriate
measures are taken to avoid it.

ICEUCTUTIATNE ST These are not insuperable obstacles.

SEGGER Microcontroller supplies the J-Link JTAG emulator for a
wide range of microcontrollers and has developed the optional
FlashBP feature, which allows developers using J-Link to use
flash breakpoints as easily as RAM breakpoints. It is designed to
assist the developer to make the best use of resources available
and reduce the number of times flash is programmed. (Reducing
flash programming steps both speeds up debugging and extends
flash life.) During the debugging process, all the resources of the
microcontroller are available to the application program; no
memory is lost for debugging.

At the heart of the feature is a RAM code specifically designed

for setting flash breakpoints: when using this code on devices

with fast flash, setting and executing flash breakpoints is as fast

as setting breakpoints in RAM. There are occasions when hardware
breakpoints, even with their limitations, can be useful, for

example when stepping through code one source-level instruction
at a time. When they are appropriate, J-Link will use hardware
breakpoints or a mix of hardware and software breakpoints,
reducing the number flash write cycles.

There are a number of other performance enhancements used by
J-Link. Flash sectors are programmed only when necessary, usually
the moment execution of the target program starts. Where
possible, J-Link locates several breakpoints in the same flash
sector: programming a single sector then sets multiple breakpoints.
And debugging does not consume memory, leaving all the
resources of the processor available to the application.

| |
.I Technology k

C-code Assemislier
int Test (int v) { Test:
Current’ e switch (v) { SUBS RO,RO, #+1
Source BEQ ??Test_0
Level SUBS RO, RO, fi+1
Step BEQ 22Test_1
SUBS RO, RO, #+2
BNE ??Test_2
B ??Test_3
case 1:
- v o= 1; ?22Test 0:MOVS RO, #+1
four break; prniB 22Test 4
Breakpoints case 2:
setat all <@ V=i ??Test_1: MOVS RO, ff+4
possible break; B 2?2Test 4
positions in case 4: i
code when @ vilaio ??Test_2: MOVS RO, #+9
executing break; B 22Test 4
step over default:
switch() ™] v = 0; 22Test_3: MOVS RO, #+0
}
return v; ??Test_4:BX LR

}

This example demonstrates how many breakpoints the debugger
needs for a simple switch()-instruction while stepping

through the source code.

When single-stepping and the current instruction is already
breakpointed, the built-in instruction set simulator reduces the
number of flash programming operations. Without instruction set
simulation, the debugger needs to clear the breakpoint, step over
the current instruction and set the breakpoint back again. The
instruction set simulator allows instructions to be simulated or

emulated in RAM. Simulation creates the results of the breakpointed

instruction.

I a register is set, or a memory area is moved, J-Link simply
executes this as if the instruction actually has been executed and
increases the program counter accordingly. Some instructions
cannot be simulated because their effect is unclear or system/
implementation dependent, such as a co-processor instruction. If

the instruction allows to be executed at a different place in memory,

J-Link will emulate the instruction. The emulation is executed by
copying the instruction with its arguments to RAM and executing
the instruction there.

Before flash programming takes place, the contents of memory
and registers are saved. This protects their contents against
changes when programming takes place.

Debugging in the target system will continue to be a significant
part of ensuing that a product functions as it should. It will never
be an easy task, requiring insight and professional skills from the
developer. The different elements of the J-Link toolkit and
FlashBP have been designed to allow the developer to select
those parts that will make the debugging task as simple and as

fast as possible. Im

